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Presentation Outline

• Design Phase
• Overview
• Design Highlight: Zero-Trust Architecture

• Attack Phase
• I2CBleed Exploit
• Supply Chain I2CBleed
• Other Attacks + Interesting Defenses

• Project Management + Lessons Learned
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Our Design Highlights

Encryption At-Rest 
of Everything

Custom Hardened 
Physical Link Layer

Encrypted Link 
Layer Wrapper

Random Nonces to 
Prevent Replays

ChaCha-Poly AEAD 
for encryption

Board RNG + von-
Neumann

Avoid Interrupts & 
Async Code

Random Delays + 
Redundant Checks

Minimal External 
Code Surface
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Design Highlight: Zero-Trust Architecture

• Thought Experiment: Assume full hardware compromise
• How to defend flags? Can we use fun crypto tricks?

• BB Boot / BB Extract: Encrypt comp. secrets w/ key stored in AP

• Op. PIN Extract / SC Extract: Encrypt keys inside AP w/ PIN
• *Potential for offline brute-force if AP compromised

• Op. Pump Swap: Not defensible, but encrypt the code to make it harder

• SC Boot / Damaged Boot: ?????
• How to require both components to be present in order to boot?
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Design Highlight: Zero-Trust Architecture

• Damaged Boot: Require all components be 
present in order to boot?

• “Russian Encryption Doll”: Encrypt AP boot 
data with all component keys

• How to distribute component keys?

• Comp Key = Hash(Root Key || Comp ID)

• How to do replace component?
• Keep Root Key encrypted with Replace Token

• RT is long enough to not be brute-able
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Attack Highlight: I2CBleed

• Three vulnerabilities in starter code
• Read/write indices not reset on repeated start
• Read index checked for == instead of >=
• Write index casted to unsigned (overflows)

• Result: Arbitrary Read/Write (!!!)
   (of anything past I2C_REGS)

• Straightforward Attack Process
1. Write in malicious shellcode
2. Write a bunch of padding
3. Overwrite vector table to jump to shellcode
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Attack Highlight: Fully-Automated I2CBleed

• Q: What to do with a near-universal arbitrary-code-execution exploit?
• A: Make it full auto: 4-5 flags in 90 seconds from ZIP download

• Step 1: Determine I2C Address of Victim
• Scan all addresses, see which ones ACK (like insecure list_components)

• Step 2: Determine I2C_REGS address (shellcode address)
• Use arbitrary read until the component crashes (stops ACKing)

• Step 3: Inject shellcode
• Step 3.5 (SC only): Scan until we find the string “ctf{“
• Locally: Dump all of flash to the UART (including keys and plaintext flags!!)

• Step 4 (SC only): Bitbang SPI data back to malicious component
• Malicious component receives SPI and dumps anything transmitted over UART



8

Interesting Defenses

• Defending against I2CBleed
• Certificate Chain: Provide each component with a ID-unique certificate signed 

using a deployment-time CA

• Encrypt component attestation data / boot message with key stored in AP

• Key pinning to assign unique component keys (bypass deployment hash check...)

• Other unique defenses
• Challenge-response handshake on every message in the system

• Custom I2C implementation (don’t trust provided libraries...)

• Use of hardware features / PUFs to prevent emulation
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Project Management + Lessons Learned
• Design Phase

• Get everyone set up with insecure example in the first week
• Design security protocol before starting implementation, but can start generic 

tasks (scripting, infra, comms, crypto library) simultaneously
• Secure By Design: Drive out the attacker in every possible way

• Attack Phase
• Balance between optimizing conventional attacks and developing novel attacks
• Track red-team availability for executing rapid attacks for first bloods
• Be willing to operate at strange hours (sadly)
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Project Management + Lessons Learned
• Overall

• Earning course credit helps offset the time investment
• Cross-Training: EEs studied crypto, Security students studied electronics
• If viable, hardware setup for each team member to individually play with

• Lessons Learned
• Sustainability of having most of the work be done by a few team members?
• Redundancy to avoid single points of failure (esp. for design phase timeline)
• Novel attacks require a lot more human-hours than estimated, fine-tuning 

“standard” attacks can be better
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(Any opinions, findings, and conclusions or recommendations expressed in this material are those of our team 
and do not necessarily reflect the views of our sponsors.)
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Thank you!
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Extra Slides


