
1

Plaid Parliament of Pwning 2024 eCTF Team
Carnegie Mellon University

Akash Arun, Andrew Chong, Aditya Desai, Nandan Desai, Quinn Henry, Sirui (Ray) Huang,
Tongzhou (Thomas) Liao, David Rudo, John Samuels, Anish Singhani (lead), Carson Swoveland,
Rohan Viswanathan, and Gabriel Zaragoza

Advised by Anthony Rowe, Patrick Tague, and Maverick Woo

2

Presentation Outline

• Design Phase
• Overview
• Design Highlight: Zero-Trust Architecture

• Attack Phase
• I2CBleed Exploit
• Supply Chain I2CBleed
• Other Attacks + Interesting Defenses

• Project Management + Lessons Learned

3

Our Design Highlights

Encryption At-Rest
of Everything

Custom Hardened
Physical Link Layer

Encrypted Link
Layer Wrapper

Random Nonces to
Prevent Replays

ChaCha-Poly AEAD
for encryption

Board RNG + von-
Neumann

Avoid Interrupts &
Async Code

Random Delays +
Redundant Checks

Minimal External
Code Surface

4

Design Highlight: Zero-Trust Architecture

• Thought Experiment: Assume full hardware compromise
• How to defend flags? Can we use fun crypto tricks?

• BB Boot / BB Extract: Encrypt comp. secrets w/ key stored in AP

• Op. PIN Extract / SC Extract: Encrypt keys inside AP w/ PIN
• *Potential for offline brute-force if AP compromised

• Op. Pump Swap: Not defensible, but encrypt the code to make it harder

• SC Boot / Damaged Boot: ?????
• How to require both components to be present in order to boot?

5

Design Highlight: Zero-Trust Architecture

• Damaged Boot: Require all components be
present in order to boot?

• “Russian Encryption Doll”: Encrypt AP boot
data with all component keys

• How to distribute component keys?

• Comp Key = Hash(Root Key || Comp ID)

• How to do replace component?
• Keep Root Key encrypted with Replace Token

• RT is long enough to not be brute-able

6

Attack Highlight: I2CBleed

• Three vulnerabilities in starter code
• Read/write indices not reset on repeated start
• Read index checked for == instead of >=
• Write index casted to unsigned (overflows)

• Result: Arbitrary Read/Write (!!!)
 (of anything past I2C_REGS)

• Straightforward Attack Process
1. Write in malicious shellcode
2. Write a bunch of padding
3. Overwrite vector table to jump to shellcode

7

Attack Highlight: Fully-Automated I2CBleed

• Q: What to do with a near-universal arbitrary-code-execution exploit?
• A: Make it full auto: 4-5 flags in 90 seconds from ZIP download

• Step 1: Determine I2C Address of Victim
• Scan all addresses, see which ones ACK (like insecure list_components)

• Step 2: Determine I2C_REGS address (shellcode address)
• Use arbitrary read until the component crashes (stops ACKing)

• Step 3: Inject shellcode
• Step 3.5 (SC only): Scan until we find the string “ctf{“
• Locally: Dump all of flash to the UART (including keys and plaintext flags!!)

• Step 4 (SC only): Bitbang SPI data back to malicious component
• Malicious component receives SPI and dumps anything transmitted over UART

8

Interesting Defenses

• Defending against I2CBleed
• Certificate Chain: Provide each component with a ID-unique certificate signed

using a deployment-time CA

• Encrypt component attestation data / boot message with key stored in AP

• Key pinning to assign unique component keys (bypass deployment hash check...)

• Other unique defenses
• Challenge-response handshake on every message in the system

• Custom I2C implementation (don’t trust provided libraries...)

• Use of hardware features / PUFs to prevent emulation

9

Project Management + Lessons Learned
• Design Phase

• Get everyone set up with insecure example in the first week
• Design security protocol before starting implementation, but can start generic

tasks (scripting, infra, comms, crypto library) simultaneously
• Secure By Design: Drive out the attacker in every possible way

• Attack Phase
• Balance between optimizing conventional attacks and developing novel attacks
• Track red-team availability for executing rapid attacks for first bloods
• Be willing to operate at strange hours (sadly)

10

Project Management + Lessons Learned
• Overall

• Earning course credit helps offset the time investment
• Cross-Training: EEs studied crypto, Security students studied electronics
• If viable, hardware setup for each team member to individually play with

• Lessons Learned
• Sustainability of having most of the work be done by a few team members?
• Redundancy to avoid single points of failure (esp. for design phase timeline)
• Novel attacks require a lot more human-hours than estimated, fine-tuning

“standard” attacks can be better

11

We acknowledge the generous support of the following sponsors to our
team:

(Any opinions, findings, and conclusions or recommendations expressed in this material are those of our team
and do not necessarily reflect the views of our sponsors.)

Sponsors Acknowledgement

CyLab IoT Initiative
AT&T
AWS
Cisco

Infineon
Nokia Bell Labs
Rolls-Royce
Siemens

12

Thank you!

13

Extra Slides

