LsiG Pwny

=

University of IUlinois
Urbana-Champaign (UIUC)

Advisor
Professor Kirill Levchenko, PhD

Team Leads
Minh Duong, Jake Mayer, Emma Hartman, Hassam Uddin

Team Members

Juniper Peng, Timothy Fong, Krish Asher, Adarsh Krishnan,
Liam Ramsey, Yash Gupta, Suchit Bapatla, Akhil Bharanidhar,

Zhaofeng Cao, Ishaan Chamoli, Tianhao Chen, Kyle Chung,
Vasunandan Dar, Jiming Ding, Sanay Doshi, Shivaditya Gohil,

Seth Gore, Zexi Huang, George Huebner, Haruto Iguchi,
Parithimaal Karmehan, Jasmehar Kochhar, Arjun Kulkarnt, Julia Li,
Jingdi Liu, Richard Liu, Theodore Ng, Stefan Ninic, Henry Qiu,
Neil Rayu, Ram Reddy, Sam Ruggerio, Naavya Shetty, @Q

Arpan Swaroop, Raghav Tirumale, Yaoyu Wu NS

Design Phase

o

Design Methodology

— No code until protocol was fully created

— This gave us time to properly design our implementation to ensure
that there were no fundamental vulnerabilities

— After the protocol is created, writing code is simply following the
protocol — it also allows team members to easily get into writing code
— Sub-teams for each area that we wanted to focus in:
— Pre-boot (List, Replace, Attest)
— Secure Communications (Boot, HIDE protocol)
— Build (Post-Boot, secrets/generation, Rust library)
— (research HW attacks, build exploits for insecure example)

LS

& eCTF 2024

B status - [E] Timeline + New view

= Filter by keyword or by field

Complete |~ E] ren

Discard Save

Title . Team = Status - End date e Labels s Milestone
~ () Pre-Boot/Attest Subteam &
20 () Implement List Components #31 Pre-Boot/Attest Subteam [Done) Mar 3, 2024 FR - List Components Begin Testing
21 () Implement Attestation #32 Pre-Boot/Attest Subteam [Done) Mar 3, 2024 FR - Attestation Begin Testing
22 () Implement Replacement #33 Pre-Boot/Attest Subteam [Done) Mar 3, 2024 FR - Replace Components Begin Testing
23 (%) Initial protocol for List Components #4 Pre-Boot/Attest Subteam | Done) Feb 10, 2024 documentation | | FR - List C Begin Implementation
24 @ Initial protocol for Attestation #5 Pre-Boot/Attest Subteam | Done) Feb 10, 2024 documentation | | FR - Attes Begin Implementation
25 (2 Initial protocol for Replacement #6 Pre-Boot/Attest Subteam [Done | Feb 10, 2024 documentation | FR - Replz Begin Implementation
ar Add item
~ () Comms Subteam 4
26 (¥) Implement Boot Verification protocol using HIDE #28 Comms Subteam [Done | Mar 3, 2024 FR - Boot Verification Begin Testing
27 () Implement HIDE protocol #27 Comms Subteam [Done) Mar 3, 2024 FR - Secure Comms Begin Testing
28 (%) Initial protocol for HIDE secure communications layer #2 Comms Subteam [Done) Feb 10, 2024 documentation | [FR - Secn Begin Implementation
29 (%) Initial protocol for Boot Verification #3 Comms Subteam [Done) Feb 10, 2024 documentation | [FR - Boot Begin Implementation
Ar Add item
~ O Build Subteam & -
30 () Implement fault-injection resistant patterns #47 Build Subteam [Done) Mar 5, 2024 Attack # Handoff
31 (¥) Add secure send/receive C interfaces for POST_BOOT code #22 Build Subteam [Done | Mar 4, 2024 FR - Build System Begin Testing
32 (%) Add mxc delav.h and led.h support to POST BOOT code #53 Build Subteam [Done | Mar 4. 2024 FR - Build Svstem Beain Testina

Design Overview

— Rust (memory-safe)

— HIDE protocol with Ascon-128 cryptographic scheme

— Transforms message into three-way challenge response handshake
— Prevents forging/replay attacks

— Delays

— Constant delays prevent brute-force attacks
— Random delays deter hardware attacks (fault injection)

LS

HIDE Protocol

— Sending of message initiates HIDE Protocol

— Sender of message sends message request to begin
communication

— Receiver sends random, encrypted challenge nonce

— Sender must decrypt and solve challenge

— Challenge response is encrypted and sent with message
— Receiver validates response before executing message

— Protocol ensures messages are encrypted,
authenticated, verified

0

HIDE Protocol

“

‘ Encrypt Random Challenge
Nonce

Decryptand Solve Challenge '
Nonce

Validate Response and
Execute Message

¢ ¢

5

Improvements to Design

— Use key-derivation functions

— Prevents key reuse and possible cryptography attacks
— Improve anti-glitching

— Adding more random delays

— Reduce impact from exploits

— Component does not need to store flags in plaintext since the AP is
the one that presents all boot messages or Attestation Data

— Implement memory protection unit (MPU)

LS

Attack Phase

o

Attack #0: Simple I2°C Component

— Improper handling of 1°C hardware conditions allows for a buffer
overrun and arbitrary code execution

— This critical vulnerability affects the Component specifically and
allows for complete compromise of the Component

— We developed an exploit for this vulnerability to extract
Component flags and carry out attacks against the AP as well

— 85% of teams were vulnerable to this exploit since the bug
originated from the reference implementation

LS

Attack #1

Attacking boot process with a compromised supply chain

o

ComponentA AP ComponentB
0x11111111 0x11111111 0x22222222
0x22222222

Here is a typical device configuration!

ComponentA AP ComponentB
0x11111111 0x11111111 0x22222222
0x22222222

Component B becomes damaged!

ComponentA AP ComponentC
0x11111111 0x11111111 O0x33333333
0x22222222

An authorized technicianorders a new Component...

ComponentA AP ComponentC
0x11111111 0x11111111 O0x33333333
O0x33333333

...and runs the replacementroutine on the AP.

ComponentA AP ComponentC
0x11111111 0x11111111 O0x33333333
O0x33333333

Boot A

The device should be able to boot!

ComponentA AP Evil Component
0x11111111 0x11111111 0x33333333
0x33333333

Boot A

Attaclker s Goal: Getthe AP to boot despite an
unauthentic Componentbeing installed.

ComponentA AP Evil Component
0x11111111 0x11111111 0x33333333
0x33333333

Validate

—>
S
%,

Simple Solution: Adding a validation step with
a shared secret key prevents trivial attacks at booting.

ComponentA Evil Component
0x11111111 O0x33333333

Send I12C exploit with
payload to extract secretkey

Using the I°C Componentexploit, we can
extract secrets!

ComponentA AP Evil Component
0x11111111 0x11111111 0x33333333
0x33333333

Validate

Secretresp.

Validate

Secretresp.

Boot

Using the I°C Componentexploit, we can
extract secrets!

ComponentA AP Evil Component
0x11111111 0x11111111 0x33333333
0x33333333

KComp A

Sig(KComp A+
0x11111111)

Better Solution: Adding a validation step with
unigue secret keys and host signhatures.

ComponentA AP Evil Component
0x11111111 0x11111111 0x33333333
0x33333333

KComp A KComp A
Sig(KComp A+ Slg(p A+
0x11111111) Ox14M111)

Better Solution: Even with the I°C exploit, the host
signature is invalid because of the Component|D mismatch.

Attack #1: Analyzing Replace Code

This code does notcheck if

if validate_token(): CompID_New isalready provisioned!
CompID_New <- input()
CompID_0ld <- input() In other words: an AP can have two
for i ;n Aum_components: provisioned Components with same ID!

1f CompID_Old == component_1ids[1]:
component_1ds[1] <- CompID_New
return Success

return Failure (“CompID_Old not found”)
return Failure (“Incorrect Token”)

LS

Attack #1: Exploiting Replace Code

— New problem: two same Component IDs means that they share
the same |2C address, which will cause bus errors
— Attacker’s fix: use the simple I1°C exploit to disable Component A
— This is done by changing Component A’s I°C address to 0x00

— Our Evil Component will handle both validate and boot requests from
the AP

5

ComponentA
0x11111111 0x11111111

KComp A Send I°C exploit with payload KComp A
4—
Sig(KComp at i Sig(Kcomp AT
0x11111111) Keomp ar SI9(Kcomp A+OX11111111|) 0x11111111)

Use the I°C Component exploit to extract the unique
secret key and signature, then disable Component Al

Ox11111111

Send I2C exploit with payload

4—
K comp i SIG(K comy aH0x11111111)
—>

i) Disable self

Use the I°C Component exploit to extract the unique
secret key and signature, then disable Component Al

KComp A

Sig(KComp A+
0x11111111)

AP Evil Component
0x11111111 0x11111111
0x11111111

Validate

—

Exchange keys 3

KComp A

Sig(KComp pt
0x11111111)

Validate

—

Exchange keys § =

Boot

Boot

The attacker has successfullytricked
the AP into booting!

Attack #2

Hardware attacks against the MAX78000FTHR board

0

Attack #2: Hardware Attack

Goal: Skip an executing instruction with fault injection by a voltage glitch
Method:

— Connect ChipWhisperer to the voltage line MCU Arm core

— Pullthe voltage to ground while the core is executing an instruction

Challenges:

— Pulling voltage to ground for too long will cause a power reset

— Requires precise timing to pinpoint instruction to skip

— Capacitors provide limited power even though we pullto ground

LS

This year, we invested in a
ChipWhisperer-Lite and an
oscilloscope!

i

SR g
: B
‘e???‘

S T
» PR

1
A
(2
P

m
ity Svces

iy

it

The oscilloscope demonstrates a
voltage glitch attack, briefly bringing
power to ground.

Reliable voltage glitching
requires the removal of
some capacitors.

0ED

117 692
L2
|8 0]

[:jlln

VCOREA

VCOREA

VCOREA

Our test board setup for voltage glitch attacks!

Attack #2: Summary

— Implication: If you could skip any single instruction in the code,
what instruction would you skip?
— Most teams did not implement protections against this scenario
— Voltage glitching allows bypassing security checks altogether

— Mitigations:

— Adding truly random delays
— If a delay is random, the attacker doesn’t know when to apply the glitch

— Multiple if statements and condition guards
— It's difficult to skip multiple instructionsin a row or time sequential skips

0

Other Attacks

— Attestation PIN brute force
— Only 6 hexadecimal digits (000000 — ffffff)!
— No delays means this can be cracked quickly

— Bad schemes + secrets sent over the wire to authenticate

— Record these secrets with a logic analyzer, build new device with
secrets

— For Damaged Boot, use the same working Component to
respond to validation/boot requests for a broken Component

— Requires a MITM device to translate the 1°C addresses

0

Thankyou! Any questions?

LS sIGPwny

	Slide 1: University of Illinois Urbana-Champaign (UIUC)
	Slide 2
	Slide 3: Design Phase
	Slide 4: Design Methodology
	Slide 5
	Slide 6: Design Overview
	Slide 7: HIDE Protocol
	Slide 8: HIDE Protocol
	Slide 9: Improvements to Design
	Slide 10: Attack Phase
	Slide 11: Attack #0: Simple I2C Component
	Slide 12: Attack #1
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Attack #1: Analyzing Replace Code
	Slide 25: Attack #1: Exploiting Replace Code
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Attack #2
	Slide 30: Attack #2: Hardware Attack
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Attack #2: Summary
	Slide 35: Other Attacks
	Slide 36: Thank you! Any questions?

