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Design Phase



Design Methodology

– No code until protocol was fully created
– This gave us time to properly design our implementation to ensure 

that there were no fundamental vulnerabilities

– After the protocol is created, writing code is simply following the 
protocol – it also allows team members to easily get into writing code

– Sub-teams for each area that we wanted to focus in:
– Pre-boot (List, Replace, Attest)

– Secure Communications (Boot, HIDE protocol)

– Build (Post-Boot, secrets/generation, Rust library)

– Attack (research HW attacks, build exploits for insecure example)





Design Overview

– Rust (memory-safe)
– HIDE protocol with Ascon-128 cryptographic scheme

– Transforms message into three-way challenge response handshake

– Prevents forging/replay attacks

– Delays
– Constant delays prevent brute-force attacks

– Random delays deter hardware attacks (fault injection)



HIDE Protocol

– Sending of message initiates HIDE Protocol
– Sender of message sends message request to begin 

communication
– Receiver sends random, encrypted challenge nonce
– Sender must decrypt and solve challenge
– Challenge response is encrypted and sent with message
– Receiver validates response before executing message
– Protocol ensures messages are encrypted, 

authenticated, verified



HIDE Protocol

Component
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Improvements to Design

– Use key-derivation functions
– Prevents key reuse and possible cryptography attacks

– Improve anti-glitching
– Adding more random delays

– Reduce impact from exploits
– Component does not need to store flags in plaintext since the AP is 

the one that presents all boot messages or Attestation Data

– Implement memory protection unit (MPU)



Attack Phase



Attack #0: Simple I2C Component

– Improper handling of I2C hardware conditions allows for a buffer 
overrun and arbitrary code execution

– This critical vulnerability affects the Component specifically and 
allows for complete compromise of the Component

– We developed an exploit for this vulnerability to extract 
Component flags and carry out attacks against the AP as well

– 85% of teams were vulnerable to this exploit since the bug 
originated from the reference implementation



Attack #1
Attacking boot process with a compromised supply chain



AP
0x11111111
0x22222222

Component A
0x11111111

Component B
0x22222222

Here is a typical device configuration!



AP
0x11111111
0x22222222

Component A
0x11111111

Component B
0x22222222

Component B becomes damaged!



AP
0x11111111
0x22222222

Component A
0x11111111

Component C
0x33333333

An authorized technician orders a new Component…



AP
0x11111111
0x33333333

Component A
0x11111111

Component C
0x33333333

… and runs the replacement routine on the AP.



AP
0x11111111
0x33333333

Component A
0x11111111

Component C
0x33333333

The device should be able to boot!

Boot A
Boot C



AP
0x11111111
0x33333333

Component A
0x11111111

Evil Component
0x33333333

Attacker’s Goal: Get the AP to boot despite an
unauthentic Component being installed.

Boot A
Boot Evil



AP
0x11111111
0x33333333

Component A
0x11111111

Evil Component
0x33333333

Simple Solution: Adding a validation step with
a shared secret key prevents trivial attacks at booting.

Boot
Boot

Validate

Validate
Secret resp.

Secret resp.

Ksym Ksym



AP
0x11111111
0x33333333

Component A
0x11111111

Evil Component
0x33333333

Using the I2C Component exploit, we can
extract secrets!

Send I2C exploit with
payload to extract secret key

Ksym

Ksym Ksym



AP
0x11111111
0x33333333

Component A
0x11111111

Evil Component
0x33333333

Using the I2C Component exploit, we can
extract secrets!

Secret resp.

Secret resp.

Ksym Ksym

Boot
Boot

Validate

Validate



AP
0x11111111
0x33333333

Component A
0x11111111

Evil Component
0x33333333

Better Solution: Adding a validation step with
unique secret keys and host signatures.

Exchange keys

Exchange keys

KComp A

Sig(KComp A+

0x11111111)

KComp C

Sig(KComp C+

0x33333333)
Boot

Boot

Validate

Validate



AP
0x11111111
0x33333333

Component A
0x11111111

Evil Component
0x33333333

Better Solution: Even with the I2C exploit, the host 
signature is invalid because of the Component ID mismatch.

KComp A

Sig(KComp A+

0x11111111)

KComp A

Sig(KComp A+

0x11111111)



Attack #1: Analyzing Replace Code

if validate_token():
CompID_New <- input()
CompID_Old <- input()
for i in num_components:

if CompID_Old == component_ids[i]:
component_ids[i] <- CompID_New
return Success

return Failure (“CompID_Old not found”)
return Failure (“Incorrect Token”)

This code does not check if
CompID_New is already provisioned!

In other words: an AP can have two 
provisioned Components with same ID!



Attack #1: Exploiting Replace Code

– New problem: two same Component IDs means that they share 
the same I2C address, which will cause bus errors
– Attacker’s fix: use the simple I2C exploit to disable Component A

– This is done by changing Component A’s I2C address to 0x00

– Our Evil Component will handle both validate and boot requests from 
the AP



KComp A, Sig(KComp A+0x11111111)

AP
0x11111111
0x11111111

Component A
0x11111111

Evil Component
0x11111111

Use the I2C Component exploit to extract the unique 
secret key and signature, then disable Component A!

Send I2C exploit with payloadKComp A

Sig(KComp A+

0x11111111)

KComp A

Sig(KComp A+

0x11111111)



KComp A, Sig(KComp A+0x11111111)

AP
0x11111111
0x11111111

Component A
0x11111111

Evil Component
0x11111111

Use the I2C Component exploit to extract the unique 
secret key and signature, then disable Component A!

Send I2C exploit with payloadKComp A

Sig(KComp A+

0x11111111)

KComp A

Sig(KComp A+

0x11111111)

Disable self



AP
0x11111111
0x11111111

Component A
0x11111111

Evil Component
0x11111111

The attacker has successfully tricked
the AP into booting!

Exchange keys
KComp A

Sig(KComp A+

0x11111111)

Boot

Validate

KComp A

Sig(KComp A+

0x11111111)Exchange keys

Validate

Boot



Attack #2
Hardware attacks against the MAX78000FTHR board



Attack #2: Hardware Attack

Goal: Skip an executing instruction with fault injection by a voltage glitch
Method: 
– Connect ChipWhisperer to the voltage line MCU Arm core
– Pull the voltage to ground while the core is executing an instruction
Challenges:
– Pulling voltage to ground for too long will cause a power reset
– Requires precise timing to pinpoint instruction to skip
– Capacitors provide limited power even though we pull to ground



This year, we invested in a 
ChipWhisperer-Lite and an 
oscilloscope!

The oscilloscope demonstrates a 
voltage glitch attack, briefly bringing 
power to ground.



Reliable voltage glitching 
requires the removal of 
some capacitors.



Our test board setup for voltage glitch attacks!



Attack #2: Summary

– Implication: If you could skip any single instruction in the code, 
what instruction would you skip?
– Most teams did not implement protections against this scenario

– Voltage glitching allows bypassing security checks altogether

– Mitigations:
– Adding truly random delays

– If a delay is random, the attacker doesn’t know when to apply the glitch

– Multiple if statements and condition guards
– It’s difficult to skip multiple instructions in a row or time sequential skips



Other Attacks

– Attestation PIN brute force
– Only 6 hexadecimal digits (000000 – ffffff)!

– No delays means this can be cracked quickly

– Bad schemes + secrets sent over the wire to authenticate
– Record these secrets with a logic analyzer, build new device with 

secrets

– For Damaged Boot, use the same working Component to 
respond to validation/boot requests for a broken Component
– Requires a MITM device to translate the I2C addresses



Thank you! Any questions?
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