

University of Illinois Urbana-Champaign (UIUC)

Advisor

Professor Kirill Levchenko, PhD

Team Leads

Minh Duong, Jake Mayer, Emma Hartman, Hassam Uddin

Team Members

Juniper Peng, Timothy Fong, Krish Asher, Adarsh Krishnan, Liam Ramsey, Yash Gupta, Suchit Bapatla, Akhil Bharanidhar, Zhaofeng Cao, Ishaan Chamoli, Tianhao Chen, Kyle Chung, Vasunandan Dar, Jiming Ding, Sanay Doshi, Shivaditya Gohil, Seth Gore, Zexi Huang, George Huebner, Haruto Iguchi, Parithimaal Karmehan, Jasmehar Kochhar, Arjun Kulkarni, Julia Li, Jingdi Liu, Richard Liu, Theodore Ng, Stefan Ninic, Henry Qiu, Neil Rayu, Ram Reddy, Sam Ruggerio, Naavya Shetty, Arpan Swaroop, Raghav Tirumale, Yaoyu Wu

Design Phase

Design Methodology

- No code until protocol was fully created
 - This gave us time to properly design our implementation to ensure that there were no fundamental vulnerabilities
 - After the protocol is created, writing code is simply following the protocol – it also allows team members to easily get into writing code
- Sub-teams for each area that we wanted to focus in:
 - Pre-boot (List, Replace, Attest)
 - Secure Communications (Boot, HIDE protocol)
 - Build (Post-Boot, secrets/generation, Rust library)
 - Attack (research HW attacks, build exploits for insecure example)

[⊖] eCTF 2024				Comp	blete 🗹 🕣 …
E Timeline + New view					
= Filter by keyword or by field					Discard Save
Title	··· Team 음··	• Status	End date •••	Labels	Milestone
V O Pre-Boot/Attest Subteam 6 ····					
20 S Implement List Components #31	Pre-Boot/Attest Subteam	- Done	Mar 3, 2024	FR - List Components	Begin Testing
21 O Implement Attestation #32	Pre-Boot/Attest Subteam	- Done	Mar 3, 2024	FR - Attestation	Begin Testing
22 Simplement Replacement #33	Pre-Boot/Attest Subteam	- Done	Mar 3, 2024	FR - Replace Components	Begin Testing
23 O Initial protocol for List Components #4	Pre-Boot/Attest Subteam	- Done	Feb 10, 2024	documentation FR - List C -	Begin Implementation
24 O Initial protocol for Attestation #5	Pre-Boot/Attest Subteam	- Done	Feb 10, 2024	documentation FR - Attes	Begin Implementation
25 O Initial protocol for Replacement #6	Pre-Boot/Attest Subteam	- Done	Feb 10, 2024	documentation FR - Repla	Begin Implementation
+ Add item					
Comms Subteam 4 ····					
26 O Implement Boot Verification protocol using HIDE #28	Comms Subteam	- Done	Mar 3, 2024	FR - Boot Verification	Begin Testing
27 Simplement HIDE protocol #27	Comms Subteam	- Done	Mar 3, 2024	FR - Secure Comms	Begin Testing
28 O Initial protocol for HIDE secure communications layer #2	Comms Subteam	- Done	Feb 10, 2024	documentation FR - Secur	Begin Implementation
29 O Initial protocol for Boot Verification #3	Comms Subteam	- Done	Feb 10, 2024	documentation FR - Boot -	Begin Implementation
+ Add item					
✓ ○ Build Subteam ⑧ ···					
30 O Implement fault-injection resistant patterns #47	Build Subteam	- Done	Mar 5, 2024	Attack	🖉 Handoff
31 O Add secure send/receive C interfaces for POST_BOOT code #22	Build Subteam	- Done	Mar 4, 2024	FR - Build System	Begin Testing
32 Add mxc delay.h and led.h support to POST BOOT code #53	Build Subteam	Done	Mar 4. 2024	FR - Build System	Beain Testina

Design Overview

- Rust (memory-safe)
- HIDE protocol with Ascon-128 cryptographic scheme
 - Transforms message into three-way challenge response handshake
 - Prevents forging/replay attacks
- Delays
 - Constant delays prevent brute-force attacks
 - Random delays deter hardware attacks (fault injection)

HIDE Protocol

- Sending of message initiates HIDE Protocol
- Sender of message sends message request to begin communication
- Receiver sends random, encrypted challenge nonce
- Sender must decrypt and solve challenge
- Challenge response is encrypted and sent with message
- Receiver validates response before executing message
- Protocol ensures messages are encrypted, authenticated, verified

HIDE Protocol

Improvements to Design

- Use key-derivation functions
 - Prevents key reuse and possible cryptography attacks
- Improve anti-glitching
 - Adding more random delays
- Reduce impact from exploits
 - Component does not need to store flags in plaintext since the AP is the one that presents all boot messages or Attestation Data
- Implement memory protection unit (MPU)

Attack Phase

Attack #0: Simple I²C Component

- Improper handling of I²C hardware conditions allows for a buffer overrun and arbitrary code execution
- This critical vulnerability affects the Component specifically and allows for <u>complete compromise</u> of the Component
- We developed an exploit for this vulnerability to extract
 Component flags and carry out attacks against the AP as well
- <u>85% of teams were vulnerable to this exploit</u> since the bug originated from the reference implementation

Attacking boot process with a compromised supply chain

Here is a typical device configuration!

Component B becomes damaged!

An authorized technician orders a new Component...

... and runs the replacement routine on the AP.

The device should be able to boot!

Attacker's Goal: Get the AP to boot despite an unauthentic Component being installed.

Simple Solution: Adding a validation step with a shared secret key prevents trivial attacks at booting.

Using the I²C Component exploit, we can extract secrets!

Using the I²C Component exploit, we can extract secrets!

Better Solution: Adding a validation step with <u>unique</u> secret keys and host signatures.

Better Solution: Even with the I²C exploit, the host signature is invalid because of the Component ID mismatch.

Attack #1: Analyzing Replace Code

CompID_New is <u>already</u> provisioned! if validate_token(): CompID_New <- input()</pre> In other words: an AP can have two CompID_Old <- input()</pre> provisioned Components with <u>same ID</u>! for i in num_components: if CompID_Old == component_ids[i]: component_ids[i] <- CompID_New</pre> return Success return Failure ("CompID_Old not found") return Failure ("Incorrect Token")

This code does not check if

Attack #1: Exploiting Replace Code

- New problem: two same Component IDs means that they share the same I²C address, which will cause bus errors
 - Attacker's fix: use the simple I²C exploit to disable Component A
 - This is done by changing Component A's I²C address to 0x00
 - Our Evil Component will handle both validate and boot requests from the AP

Use the I²C Component exploit to extract the unique secret key and signature, then disable Component A!

Use the I²C Component exploit to extract the unique secret key and signature, then disable Component A!

The attacker has successfully tricked the AP into booting!

Hardware attacks against the MAX78000FTHR board

Attack #2: Hardware Attack

Goal: Skip an executing instruction with fault injection by a voltage glitch **Method:**

- Connect ChipWhisperer to the voltage line MCU Arm core
- Pull the voltage to ground while the core is executing an instruction
 Challenges:
- Pulling voltage to ground for too long will cause a power reset
- Requires precise timing to pinpoint instruction to skip
- Capacitors provide limited power even though we pull to ground

The oscilloscope demonstrates a voltage glitch attack, briefly bringing power to ground.

This year, we invested in a ChipWhisperer-Lite and an oscilloscope!

Reliable voltage glitching requires the removal of some capacitors.

Our test board setup for voltage glitch attacks!

Attack #2: Summary

- Implication: If you could skip any single instruction in the code, what instruction would you skip?
 - Most teams did not implement protections against this scenario
 - Voltage glitching allows bypassing security checks altogether
- Mitigations:
 - Adding truly random delays
 - If a delay is random, the attacker doesn't know when to apply the glitch
 - Multiple if statements and condition guards
 - It's difficult to skip multiple instructions in a row or time sequential skips

Other Attacks

- Attestation PIN brute force
 - Only 6 hexadecimal digits (000000 fffff)!
 - No delays means this can be cracked quickly
- Bad schemes + secrets sent over the wire to authenticate
 - Record these secrets with a logic analyzer, build new device with secrets
- For Damaged Boot, use the same working Component to respond to validation/boot requests for a broken Component
 - Requires a MITM device to translate the I²C addresses

Thank you! Any questions?

