
University of Illinois
Urbana-Champaign (UIUC)



Advisor
Professor Kirill Levchenko, PhD

Team Leads
Minh Duong, Jake Mayer, Emma Hartman, Hassam Uddin

Team Members
Juniper Peng, Timothy Fong, Krish Asher, Adarsh Krishnan, 

Liam Ramsey, Yash Gupta, Suchit Bapatla, Akhil Bharanidhar, 
Zhaofeng Cao, Ishaan Chamoli, Tianhao Chen, Kyle Chung, 

Vasunandan Dar, Jiming Ding, Sanay Doshi, Shivaditya Gohil, 
Seth Gore, Zexi Huang, George Huebner, Haruto Iguchi, 

Parithimaal Karmehan, Jasmehar Kochhar, Arjun Kulkarni, Julia Li, 
Jingdi Liu, Richard Liu, Theodore Ng, Stefan Ninic, Henry Qiu, 

Neil Rayu, Ram Reddy, Sam Ruggerio, Naavya Shetty, 
Arpan Swaroop, Raghav Tirumale, Yaoyu Wu



Design Phase



Design Methodology

– No code until protocol was fully created
– This gave us time to properly design our implementation to ensure 

that there were no fundamental vulnerabilities

– After the protocol is created, writing code is simply following the 
protocol – it also allows team members to easily get into writing code

– Sub-teams for each area that we wanted to focus in:
– Pre-boot (List, Replace, Attest)

– Secure Communications (Boot, HIDE protocol)

– Build (Post-Boot, secrets/generation, Rust library)

– Attack (research HW attacks, build exploits for insecure example)





Design Overview

– Rust (memory-safe)
– HIDE protocol with Ascon-128 cryptographic scheme

– Transforms message into three-way challenge response handshake

– Prevents forging/replay attacks

– Delays
– Constant delays prevent brute-force attacks

– Random delays deter hardware attacks (fault injection)



HIDE Protocol

– Sending of message initiates HIDE Protocol
– Sender of message sends message request to begin 

communication
– Receiver sends random, encrypted challenge nonce
– Sender must decrypt and solve challenge
– Challenge response is encrypted and sent with message
– Receiver validates response before executing message
– Protocol ensures messages are encrypted, 

authenticated, verified



HIDE Protocol

Component

Validate Response and 
Execute Message

Encrypt Random Challenge 
Nonce

AP

Request to Send Message

Decrypt and Solve Challenge 
Nonce



Improvements to Design

– Use key-derivation functions
– Prevents key reuse and possible cryptography attacks

– Improve anti-glitching
– Adding more random delays

– Reduce impact from exploits
– Component does not need to store flags in plaintext since the AP is 

the one that presents all boot messages or Attestation Data

– Implement memory protection unit (MPU)



Attack Phase



Attack #0: Simple I2C Component

– Improper handling of I2C hardware conditions allows for a buffer 
overrun and arbitrary code execution

– This critical vulnerability affects the Component specifically and 
allows for complete compromise of the Component

– We developed an exploit for this vulnerability to extract 
Component flags and carry out attacks against the AP as well

– 85% of teams were vulnerable to this exploit since the bug 
originated from the reference implementation



Attack #1
Attacking boot process with a compromised supply chain



AP
0x11111111
0x22222222

Component A
0x11111111

Component B
0x22222222

Here is a typical device configuration!



AP
0x11111111
0x22222222

Component A
0x11111111

Component B
0x22222222

Component B becomes damaged!



AP
0x11111111
0x22222222

Component A
0x11111111

Component C
0x33333333

An authorized technician orders a new Component…



AP
0x11111111
0x33333333

Component A
0x11111111

Component C
0x33333333

… and runs the replacement routine on the AP.



AP
0x11111111
0x33333333

Component A
0x11111111

Component C
0x33333333

The device should be able to boot!

Boot A
Boot C



AP
0x11111111
0x33333333

Component A
0x11111111

Evil Component
0x33333333

Attacker’s Goal: Get the AP to boot despite an
unauthentic Component being installed.

Boot A
Boot Evil



AP
0x11111111
0x33333333

Component A
0x11111111

Evil Component
0x33333333

Simple Solution: Adding a validation step with
a shared secret key prevents trivial attacks at booting.

Boot
Boot

Validate

Validate
Secret resp.

Secret resp.

Ksym Ksym



AP
0x11111111
0x33333333

Component A
0x11111111

Evil Component
0x33333333

Using the I2C Component exploit, we can
extract secrets!

Send I2C exploit with
payload to extract secret key

Ksym

Ksym Ksym



AP
0x11111111
0x33333333

Component A
0x11111111

Evil Component
0x33333333

Using the I2C Component exploit, we can
extract secrets!

Secret resp.

Secret resp.

Ksym Ksym

Boot
Boot

Validate

Validate



AP
0x11111111
0x33333333

Component A
0x11111111

Evil Component
0x33333333

Better Solution: Adding a validation step with
unique secret keys and host signatures.

Exchange keys

Exchange keys

KComp A

Sig(KComp A+

0x11111111)

KComp C

Sig(KComp C+

0x33333333)
Boot

Boot

Validate

Validate



AP
0x11111111
0x33333333

Component A
0x11111111

Evil Component
0x33333333

Better Solution: Even with the I2C exploit, the host 
signature is invalid because of the Component ID mismatch.

KComp A

Sig(KComp A+

0x11111111)

KComp A

Sig(KComp A+

0x11111111)



Attack #1: Analyzing Replace Code

if validate_token():
CompID_New <- input()
CompID_Old <- input()
for i in num_components:

if CompID_Old == component_ids[i]:
component_ids[i] <- CompID_New
return Success

return Failure (“CompID_Old not found”)
return Failure (“Incorrect Token”)

This code does not check if
CompID_New is already provisioned!

In other words: an AP can have two 
provisioned Components with same ID!



Attack #1: Exploiting Replace Code

– New problem: two same Component IDs means that they share 
the same I2C address, which will cause bus errors
– Attacker’s fix: use the simple I2C exploit to disable Component A

– This is done by changing Component A’s I2C address to 0x00

– Our Evil Component will handle both validate and boot requests from 
the AP



KComp A, Sig(KComp A+0x11111111)

AP
0x11111111
0x11111111

Component A
0x11111111

Evil Component
0x11111111

Use the I2C Component exploit to extract the unique 
secret key and signature, then disable Component A!

Send I2C exploit with payloadKComp A

Sig(KComp A+

0x11111111)

KComp A

Sig(KComp A+

0x11111111)



KComp A, Sig(KComp A+0x11111111)

AP
0x11111111
0x11111111

Component A
0x11111111

Evil Component
0x11111111

Use the I2C Component exploit to extract the unique 
secret key and signature, then disable Component A!

Send I2C exploit with payloadKComp A

Sig(KComp A+

0x11111111)

KComp A

Sig(KComp A+

0x11111111)

Disable self



AP
0x11111111
0x11111111

Component A
0x11111111

Evil Component
0x11111111

The attacker has successfully tricked
the AP into booting!

Exchange keys
KComp A

Sig(KComp A+

0x11111111)

Boot

Validate

KComp A

Sig(KComp A+

0x11111111)Exchange keys

Validate

Boot



Attack #2
Hardware attacks against the MAX78000FTHR board



Attack #2: Hardware Attack

Goal: Skip an executing instruction with fault injection by a voltage glitch
Method: 
– Connect ChipWhisperer to the voltage line MCU Arm core
– Pull the voltage to ground while the core is executing an instruction
Challenges:
– Pulling voltage to ground for too long will cause a power reset
– Requires precise timing to pinpoint instruction to skip
– Capacitors provide limited power even though we pull to ground



This year, we invested in a 
ChipWhisperer-Lite and an 
oscilloscope!

The oscilloscope demonstrates a 
voltage glitch attack, briefly bringing 
power to ground.



Reliable voltage glitching 
requires the removal of 
some capacitors.



Our test board setup for voltage glitch attacks!



Attack #2: Summary

– Implication: If you could skip any single instruction in the code, 
what instruction would you skip?
– Most teams did not implement protections against this scenario

– Voltage glitching allows bypassing security checks altogether

– Mitigations:
– Adding truly random delays

– If a delay is random, the attacker doesn’t know when to apply the glitch

– Multiple if statements and condition guards
– It’s difficult to skip multiple instructions in a row or time sequential skips



Other Attacks

– Attestation PIN brute force
– Only 6 hexadecimal digits (000000 – ffffff)!

– No delays means this can be cracked quickly

– Bad schemes + secrets sent over the wire to authenticate
– Record these secrets with a logic analyzer, build new device with 

secrets

– For Damaged Boot, use the same working Component to 
respond to validation/boot requests for a broken Component
– Requires a MITM device to translate the I2C addresses



Thank you! Any questions?


	Slide 1: University of Illinois Urbana-Champaign (UIUC)
	Slide 2
	Slide 3: Design Phase
	Slide 4: Design Methodology
	Slide 5
	Slide 6: Design Overview
	Slide 7: HIDE Protocol
	Slide 8: HIDE Protocol
	Slide 9: Improvements to Design
	Slide 10: Attack Phase
	Slide 11: Attack #0: Simple I2C Component
	Slide 12: Attack #1
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Attack #1: Analyzing Replace Code
	Slide 25: Attack #1: Exploiting Replace Code
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Attack #2
	Slide 30: Attack #2: Hardware Attack
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Attack #2: Summary
	Slide 35: Other Attacks
	Slide 36: Thank you! Any questions?

