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Design Methodology

— No code until protocol was fully created

— This gave us time to properly design our implementation to ensure
that there were no fundamental vulnerabilities

— After the protocol is created, writing code is simply following the
protocol — it also allows team members to easily get into writing code
— Sub-teams for each area that we wanted to focus in:
— Pre-boot (List, Replace, Attest)
— Secure Communications (Boot, HIDE protocol)
— Build (Post-Boot, secrets/generation, Rust library)
— (research HW attacks, build exploits for insecure example)
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& eCTF 2024

B status - [E] Timeline + New view

= Filter by keyword or by field

Complete |~ E] ren

Discard Save

Title . Team = Status - End date e Labels s Milestone
~ () Pre-Boot/Attest Subteam &
20 () Implement List Components #31 Pre-Boot/Attest Subteam [ Done ) Mar 3, 2024 FR - List Components Begin Testing
21 () Implement Attestation #32 Pre-Boot/Attest Subteam [ Done ) Mar 3, 2024 FR - Attestation Begin Testing
22 () Implement Replacement #33 Pre-Boot/Attest Subteam [ Done ) Mar 3, 2024 FR - Replace Components Begin Testing
23 (%) Initial protocol for List Components #4 Pre-Boot/Attest Subteam | Done ) Feb 10, 2024 documentation | | FR - List C Begin Implementation
24 @ Initial protocol for Attestation #5 Pre-Boot/Attest Subteam | Done ) Feb 10, 2024 documentation | | FR - Attes Begin Implementation
25 (2 Initial protocol for Replacement #6 Pre-Boot/Attest Subteam [ Done | Feb 10, 2024 documentation | FR - Replz Begin Implementation
ar Add item
~ () Comms Subteam 4
26  (¥) Implement Boot Verification protocol using HIDE #28 Comms Subteam [ Done | Mar 3, 2024 FR - Boot Verification Begin Testing
27 () Implement HIDE protocol #27 Comms Subteam [ Done ) Mar 3, 2024 FR - Secure Comms Begin Testing
28 (%) Initial protocol for HIDE secure communications layer #2 Comms Subteam [ Done ) Feb 10, 2024 documentation | [ FR - Secn Begin Implementation
29 (%) Initial protocol for Boot Verification #3 Comms Subteam [ Done ) Feb 10, 2024 documentation | [ FR - Boot Begin Implementation
Ar Add item
~ O Build Subteam & -
30 () Implement fault-injection resistant patterns #47 Build Subteam [ Done ) Mar 5, 2024 Attack # Handoff
31 (¥) Add secure send/receive C interfaces for POST_BOOT code #22 Build Subteam [ Done | Mar 4, 2024 FR - Build System Begin Testing
32 (%) Add mxc delav.h and led.h support to POST BOOT code #53 Build Subteam [ Done | Mar 4. 2024 FR - Build Svstem Beain Testina



Design Overview

— Rust (memory-safe)

— HIDE protocol with Ascon-128 cryptographic scheme

— Transforms message into three-way challenge response handshake
— Prevents forging/replay attacks

— Delays

— Constant delays prevent brute-force attacks
— Random delays deter hardware attacks (fault injection)
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HIDE Protocol

— Sending of message initiates HIDE Protocol

— Sender of message sends message request to begin
communication

— Receiver sends random, encrypted challenge nonce

— Sender must decrypt and solve challenge

— Challenge response is encrypted and sent with message
— Receiver validates response before executing message

— Protocol ensures messages are encrypted,
authenticated, verified
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HIDE Protocol
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Improvements to Design

— Use key-derivation functions

— Prevents key reuse and possible cryptography attacks
— Improve anti-glitching

— Adding more random delays

— Reduce impact from exploits

— Component does not need to store flags in plaintext since the AP is
the one that presents all boot messages or Attestation Data

— Implement memory protection unit (MPU)
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Attack #0: Simple I2°C Component

— Improper handling of 1°C hardware conditions allows for a buffer
overrun and arbitrary code execution

— This critical vulnerability affects the Component specifically and
allows for complete compromise of the Component

— We developed an exploit for this vulnerability to extract
Component flags and carry out attacks against the AP as well

— 85% of teams were vulnerable to this exploit since the bug
originated from the reference implementation
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Attack #1

Attacking boot process with a compromised supply chain
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ComponentA AP ComponentB
0x11111111 0x11111111 0x22222222
0x22222222

Here is a typical device configuration!



ComponentA AP ComponentB
0x11111111 0x11111111 0x22222222
0x22222222

Component B becomes damaged!



ComponentA AP ComponentC
0x11111111 0x11111111 O0x33333333
0x22222222

An authorized technicianorders a new Component...



ComponentA AP ComponentC
0x11111111 0x11111111 O0x33333333
O0x33333333

...and runs the replacementroutine on the AP.



ComponentA AP ComponentC
0x11111111 0x11111111 O0x33333333
O0x33333333

Boot A

The device should be able to boot!



ComponentA AP Evil Component
0x11111111 0x11111111 0x33333333
0x33333333

Boot A

Attaclker s Goal: Getthe AP to boot despite an
unauthentic Componentbeing installed.



ComponentA AP Evil Component
0x11111111 0x11111111 0x33333333
0x33333333

Validate

—>
S
%,

Simple Solution: Adding a validation step with
a shared secret key prevents trivial attacks at booting.



ComponentA Evil Component
0x11111111 O0x33333333

Send I12C exploit with
payload to extract secretkey

Using the I°C Componentexploit, we can
extract secrets!



ComponentA AP Evil Component
0x11111111 0x11111111 0x33333333
0x33333333

Validate

Secretresp.

Validate

Secretresp.

Boot

Using the I°C Componentexploit, we can
extract secrets!



ComponentA AP Evil Component
0x11111111 0x11111111 0x33333333
0x33333333

KComp A

Sig(KComp A+
0x11111111)

Better Solution: Adding a validation step with
unigue secret keys and host signhatures.




ComponentA AP Evil Component
0x11111111 0x11111111 0x33333333
0x33333333

KComp A KComp A
Sig(KComp A+ Slg( p A+
0x11111111) Ox14M111)

Better Solution: Even with the I°C exploit, the host
signature is invalid because of the Component|D mismatch.



Attack #1: Analyzing Replace Code

This code does notcheck if

if validate_token(): CompID_New isalready provisioned!
CompID_New <- input()
CompID_0ld <- input() In other words: an AP can have two
for i ;n Aum_components: provisioned Components with same ID!

1f CompID_Old == component_1ids[1]:
component_1ds[1] <- CompID_New
return Success

return Failure (“CompID_Old not found”)
return Failure (“Incorrect Token”)
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Attack #1: Exploiting Replace Code

— New problem: two same Component IDs means that they share
the same |2C address, which will cause bus errors
— Attacker’s fix: use the simple I1°C exploit to disable Component A
— This is done by changing Component A’s I°C address to 0x00

— Our Evil Component will handle both validate and boot requests from
the AP
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ComponentA
0x11111111 0x11111111

KComp A Send I°C exploit with payload KComp A
4—
Sig(KComp at i Sig(Kcomp AT
0x11111111) Keomp ar SI9(Kcomp A+OX11111111| ) 0x11111111)

Use the I°C Component exploit to extract the unique
secret key and signature, then disable Component Al



Ox11111111

Send I2C exploit with payload

4—
K comp i SIG(K comy aH0x11111111)
—>

i ) Disable self

Use the I°C Component exploit to extract the unique
secret key and signature, then disable Component Al

KComp A

Sig(KComp A+
0x11111111)




AP Evil Component
0x11111111 0x11111111
0x11111111

Validate

—

Exchange keys 3

KComp A

Sig(KComp pt
0x11111111)

Validate

—

Exchange keys § =

Boot

Boot

The attacker has successfullytricked
the AP into booting!



Attack #2

Hardware attacks against the MAX78000FTHR board
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Attack #2: Hardware Attack

Goal: Skip an executing instruction with fault injection by a voltage glitch
Method:

— Connect ChipWhisperer to the voltage line MCU Arm core

— Pullthe voltage to ground while the core is executing an instruction

Challenges:

— Pulling voltage to ground for too long will cause a power reset

— Requires precise timing to pinpoint instruction to skip

— Capacitors provide limited power even though we pullto ground
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This year, we invested in a
ChipWhisperer-Lite and an
oscilloscope!
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The oscilloscope demonstrates a
voltage glitch attack, briefly bringing
power to ground.




Reliable voltage glitching
requires the removal of
some capacitors.
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Our test board setup for voltage glitch attacks!



Attack #2: Summary

— Implication: If you could skip any single instruction in the code,
what instruction would you skip?
— Most teams did not implement protections against this scenario
— Voltage glitching allows bypassing security checks altogether

— Mitigations:

— Adding truly random delays
— If a delay is random, the attacker doesn’t know when to apply the glitch

— Multiple if statements and condition guards
— It's difficult to skip multiple instructionsin a row or time sequential skips
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Other Attacks

— Attestation PIN brute force
— Only 6 hexadecimal digits (000000 — ffffff)!
— No delays means this can be cracked quickly

— Bad schemes + secrets sent over the wire to authenticate

— Record these secrets with a logic analyzer, build new device with
secrets

— For Damaged Boot, use the same working Component to
respond to validation/boot requests for a broken Component

— Requires a MITM device to translate the 1°C addresses
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Thankyou! Any questions?
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